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Abstract—A hollow-cathode microplasma was used to modify
the lumenal surface of small-diameter polyethylene (PE). We make
use of two microplasma diagnostics to monitor the plasma proper-
ties during the treatment process. A microwave cavity was used to
measure the density of the microplasma. Emitted light from the
microplasma was fed into a monochromator at various positions
along the PE tube to assess uniformity of the microplasma. Ef-
fectiveness of plasma treatments were evaluated using the capil-
lary-rise method at various positions along the tubing. We show
a correlation between the properties of the inner surface of the
PE tubing and the light emitted from the plasma. A Poly(ethy-
lene oxide) (PEO) surfactant was immobilized to the lumenal sur-
face of the PE tubing using the microplasma discharge. An in vitro
blood-circulation loop was constructed to test the hematocompat-
ibility of the PE tubes. After blood exposure, scanning electron
microscope images were taken to assess the density of adhering
platelets along the length of the tubes. The plasma-treated tubing
showed fewer blood adherents than the untreated tubing. By suit-
ably controlling the pressure drop along the tube, the uniformity
of the microplasma treatment along the tubing can be optimized.

Index Terms—Argon plasma immobilization, biomaterials,
blood, capillary rise method, hematocompatibility, hollow cathode
discharges, microplasma diagnostics, microplasma surface modi-
fication, microwave cavity, polyethylene oxide (PEO), small-diam-
eter polymer tubing, vascular grafts.

I. INTRODUCTION

THE REALIZATION of small-scale biomedical devices
will be closely related to the nonfouling/biocompat-

ible properties of the exposed surfaces and the uniformity of
the surface treatment throughout the device. Plasma-surface
modification is one possible methodology for improving the
biocompatible properties of biomaterials. To date, most
studies
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of plasma-modified biomaterials make use of a large-volume
plasma reactor to modify the surface of a small disk or film
substrate [1]–[4]. However, such reactors are not very practical
for surface modification of small diameter tubing [5] and many
small-scale biomedical devices [8]. This is because the plasma
often does not penetrate along the entire length of the inside (lu-
menal surface) of the tubing, [6], [7] when the tubing is placed
in a large-volume reactor, and thus only small portions near the
ends of the tube are treated [5]. Also, complications in treating
the side walls of narrow trenches and reservoirs of small-scale
biomedical devices can cause further nonuniformities of the
coating. This is because the flux of energetic plasma species to
the bottom of trenches is often not the same as to the sidewalls.

Microplasma surface modification has the potential to treat
surfaces of a variety of shapes and sizes that are contained in
the small volume of a biomedical device. This could be done by
embedding [8] microelectrodes into the structure of the device
itself. With proper placement of the microelectrodes within the
device, it may be possible to produce both bioadhesive and
nonadhesive surface areas in the same device. This would allow
for different surface-specific treatments of various chambers
and channels throughout a device by connecting the leads of
the electrodes to the appropriate excitation source (microwave
[9]–[11], radiofrequency [12], [13], low frequency [14], [15],
or direct current [16]–[18]) and inletting the proper [4] gas
monomer(s) or surfactant coating. However, without a thorough
understanding of the properties of such microplasmas, it is not
likely that they can be controlled sufficiently to produce the
desired surface modifications.

One of the simplest structures for a biomedical device is that
of a tube. This includes, but is not limited to, artificial blood ves-
sels (vascular grafts) of various diameters, as well as catheters.
Plasma modification has been used to treat the lumenal sur-
faces of polyethylene terephthalate [19], [20] (PET, Dacron),
expanded polytetrafluoroethylene, [19], [21] (ePTFE), polyeth-
ylene [22], [23] (PE), and polyurethane [7] tubes. The tradi-
tional method for coating the lumenal surfaces of these polymer
tubes uses plasma polymerization (PP) of a monomer gas so as
to modify the surface of the material directly or to introduce
functional groups that can later be used to immobilize specific
biomolecules or proteins. However, the key problem with pre-
vious approaches is the lack of the ability to control the unifor-
mity of the coating along the length of the tubing. The unifor-
mity includes that of the coating thickness, as well as its chem-
ical composition [6]. This is due to the inherent drawback when
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Fig. 1. Experimental configuration used to plasma-treat small-diameter PE tubing with the plasma diagnostics used to monitor the properties of the plasma
discharge.

using PP where continuous consumption of the monomer gas
and removal of the residual gases throughout the length of the
tubing is a mandatory condition for the uniformity of the coating
[5], [6].

In this paper, we describe a new approach for treating
small-diameter polymer tubing [23] and we make use of two
microplasma diagnostics to monitor the plasma properties
during the treatment process. Hollow cathode (HC) electrodes
[24]–[26] were placed in vacuum at each end of the PE tubing
creating a microplasma along the entire length of the tubing. In-
stead of using PP, we use plasma immobilization (PI) [27]–[31],
to immobilize a Poly(ethylene oxide) (PEO) surfactant [32],
[33] to the lumenal surface of polyethylene (PE) tubing. We
will show that immobilized PEO is useful for the reduction of
adhering human platelets to the lumenal surface after exposure
to blood flow in an in vitro blood circulation loop.

The benefits of using a microplasma discharge together with
the PI technique will give us the ability to control uniformly
the surface treatment of the lumenal surface along the entire
length of small-diameter polymer tubes. In addition, the use of
the appropriate diagnostics gives us the ability to examine the
properties of microplasmas in general, as well as to find the
optimal conditions for microplasma processing of biomaterials
in a small volume.

II. EXPERIMENTAL CONFIGURATION FOR

MICROPLASMA TREATMENT

To prepare for PI, microplasma surface modification was used
to modify the lumenal surface of small diameter PE tubing (I.D.
1.14 mm, O.D. 1.57 mm). A diagram of the plasma discharge
configuration and the diagnostics used in this work is shown in
Fig. 1. The surface modification was accomplished by placing
HC electrodes at each end of the polymer tubing which was then
evacuated at one end while feed gas was injected at the other
end, as shown in Fig. 1. Two different HC electrode sizes were
used at each end of the polymer tube. The low-pressure side
had a HC electrode with an inner diameter of 8 mm and the
high-pressure side HC electrode had a diameter of 6 mm. The
HC electrodes were contained in glass envelopes which were
connected to each end of the polymer tube via a compressional
fitting. It should be noted that the region outside of the radius of
the polymer tube was at atmospheric pressure, thus the plasma
was contained only inside of the tube. The electrodes where
driven by a 15-kV ac transformer, which was controlled with a

VARIAC. The corresponding discharge current through the tube
was about 10 mA.

Two plasma diagnostics were used to monitor the unifor-
mity of the plasma along the length of the polymer tubing
by measuring spectral components of the emitted light with a
monochromator and the plasma electron density by measuring
the shift in the resonant frequency of a microwave cavity.
The tubing and the HC electrodes were attached to a movable
table, so that regions of the tubing can be passed through
the microwave cavity and in front of the entrance slit of the
monochromator simultaneously. Thermocouple gauges moni-
tored the pressure at each end of the PE tube. The pressure drop
across the tube was controlled by pumping on both ends of the
tubing and adjusting the throttle valves at each end of the tube,
while inletting gas at one end. Variations in the properties of the
treated tubing where observed when the plasma is not uniform
along the length of the tubing. We will show that by controlling
the pressure drop across the polymer tubing, the uniformity of
the plasma treatment can be optimized. Long plasma exposure
times had to be avoided to keep the PE tube from melting. To
accomplish this, the PE tubes were exposed to a 1-s plasma
pulse and then the tube was allowed to cool before the next
pulse took place.

III. MICROPLASMA DIAGNOSTICS

When a plasma is contained to a small volume or small cross-
sectional area, the plasma properties; such as electron density,
chemical composition, temperature, spectral emission, etc., are
often much different from that which is typically found in a
conventional larger-volume reactor. Thus, the conditions under
which microplasmas modify the surface of biomaterials will
also be different. A thorough understanding of the properties
of such plasmas is key to controlling the surface properties that
can be obtained with microplasma discharges. This drives the
necessity for noninvasive diagnostics, since immersing a probe
into such plasmas is very likely to significantly perturb them
from their normal operating conditions [34].

To determine the uniformity of the microplasma during the
treatment of PE tubing, the microwave cavity diagnostic was
used to obtain an estimate of the plasma density of the mi-
croplasma inside of a small-diameter polytetrafluoroethylene
(PTFE) polymer tube. In addition, the intensity of the 3570
Nitrogen line emitted from an air plasma discharge was mon-
itored as a function of distance along the tube to estimate the
variation of the gas composition along the tubing.
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Fig. 2. TM mode as a function of frequency a) without the polymer tubing,
b) with the polymer tubing, and c) with both the polymer tubing and plasma
discharge present inside the microwave cavity.

A. Microwave Cavity Measurements

The microwave cavity method for measuring plasma den-
sity and collision frequency has been used for a long time [35].
However, with the emergence of microplasmas, the use of this
diagnostic has been mostly overlooked. The microwave cavity
method may be an ideal diagnostic for measuring the properties
of such microplasmas, since a microwave cavity can be made
into almost any arbitrary shape and a number of electromag-
netic modes can be excited. Since the 1950s, right-circular cav-
ities driven in the mode have been widely used in the
microwave portion of the spectrum for plasma measurements
[36], [37]. In this method, the plasma is placed along the axis of
the cavity, and the change of resonant frequency and Q value are
measured [38]. From these measurements, the average plasma
density [37], [39] and collision frequency [40] can be calculated.

For this work, a copper cylindrical microwave cavity of
radius 75 mm and height 40 mm was constructed that had

resonant frequency of 3029 MHz. The output of a
Hewlett-Packard 83623A synthesizer-sweeper was coupled
through a half-turn small-diameter loop placed on the inner
circular surface of the cavity half-way between the ends. An
identical loop placed 180 around the cavity from the input
loop fed a diode detector. This arrangement can thus measure
the transmission through the cavity as a function of frequency.
Fig. 2 shows the results of three scans from 3026–3031 MHz.
The three scans are as follows: 1) empty cavity; 2) empty PTFE
tubing placed along the axis of the cavity; and 3) scan number
2 with an air plasma formed inside the tubing. Since PTFE
tubing has a higher melting temperature than PE, it was used in
the initial testing of the diagnostic. In Fig. 2, it can be seen that
when no tubing is inside of the cavity, the resonant frequency
of the mode is 3029.27 MHz. When the PTFE tubing
( , ) was inserted along the
axis of the microwave cavity, the resonant frequency of the

mode shifted down by 2.03 MHz. This is because the
dielectric constant of PE is greater than that of air and thus the

Fig. 3. Light emitted from the 3570-�A nitrogen line as a function of time over
several ac periods for different feed pressures.

resonant frequency of the mode decreases [38]. When
a plasma is created inside of the tubing, since the plasma’s
dielectric constant is less than that of vacuum, the resonant
frequency of the mode shifts up and the Q of the cavity
gets smaller since the plasma is lossier than vacuum. This can
be seen in Fig. 2 where both the upward shift and the increase
in width of the resonance (lower Q) are evident. The shift of
the resonant frequency caused by the presence of the plasma
is small, but it is measurable and was found to be 0.03 MHz.
Initial estimates of the plasma density were found using a
previously developed model [39], which gave a value of about

for the plasma electron density.
During this measurement, the low-pressure side of the tubing
was at 1.8 torr, the high-pressure side was at 2 torr and the
microwave cavity was placed 20 cm from the high-pressure
side of a 50-cm long PTFE tube.

B. Monochromator Measurements

Optical emission spectroscopy [41] provides both the iden-
tification and monitoring of light emitting species in the mi-
croplasma during operation. Fig. 3 shows the intensity of the
emission from the 3570- nitrogen line as a function of time
over several alternating current periods, for three different air
fill pressures. It can be seen that as the pressure is increased,
the intensity of the light emitted from the plasma also increases.
Thus, if a pressure drop is created along the length of a small-di-
ameter polymer tube, the intensity of the light emitted from the
microplasma as a function of distance along the tubing should
provide information about the uniformity of the discharge.

To test this hypothesis, the intensity of light emitted from the
plasma that passes through the wall of the PE tubing from the
3570- line as a function of position along the length of a 50-cm
long polymer tubing was recorded. By changing the pressures
at each end of the polymer tubing, we can control the total
pressure drop across the tubing. Two conditions where chosen:
1) a uniform plasma case (low-pressure side ,
high-pressure side ), and 2) a nonuniform
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Fig. 4. Light emitted from the 3570-�A nitrogen line as a function of position
along the polymer tubing for two plasma conditions, uniform and nonuniform
air-microplasma discharge conditions.

case (low-pressure side , high-pressure side
). Thus, the pressure drop was about 50 mtorr for the

uniform plasma and 380 mtorr for the nonuniform plasma. The
intensity of the 3570- line measured as a function of distance
along the tubing, for the two cases is shown in Fig. 4. For the
uniform plasma case, the light intensity reaches a minimum in
the middle 20 cm of the tubing and increases at each end of
the tubing. We believe that this is due to the fact that the HC
electrodes are at each end of the tube, and thus the resulting
electric fields and, therefore, the plasma is more intense at
each end. However, when the pressure drop across the tubing
is increased to 380 mtorr (nonuniform case), the light intensity
measured along the tubing has a maximum at the high-pressure
end and then it decays monotonically toward the low-pressure
end of the tubing before reaching a constant level just before
the HC electrode is reached. We conclude that the light emitted
from the microplasma can become nonuniform along the tubing
due to two factors: 1) if a large pressure drop is created across
the tubing, and 2) proximity to the electrodes that create the
plasma. It is important to determine whether the light intensity
measured as a function of position along the length of the
polymer tubing can be used to predict the uniformity of the
surface treatment created by a uniform or nonuniform plasma
discharge. To test this hypothesis, the treatment effectiveness
along the lumenal surface of the tubing was evaluated using
the capillary-rise method, which can be directly related to the
contact angle.

IV. CAPILLARY-RISE METHOD

Effectiveness of the plasma treatment on the lumenal surface
of the PE tubing was evaluated using the capillary-rise (CR)
method [7]. Use of the CR method allows us to monitor the
uniformity of the contact angle inside the PE tubing as a func-
tion of distance along the tubing, which is believed to be very
dependent on the lumenal-surface properties. The CR measure-
ments of the PE tubing were obtained by cutting the 50-cm long
plasma-treated tubing into ten sections of 5-cm length. Each sec-
tion was then dipped in a beaker of deionized water such that at
least 4 cm of the section was submerged [7]. Then the tube was
slowly withdrawn from the water, and the height of the water

Fig. 5. Capillary rise measurements taken as a function of position along
two PE tubes exposed to two different plasma conditions, a uniform and a
nonuniform air-microplasma discharge.

column supported by the surface tension on the lumenal sur-
face was measured. The contact angle of the lumenal surface is
related to the height of the column of liquid by the expression
which is obtained from the Young–Laplace equation [42]

(1)

where is the height of the liquid (it can be negative if the liquid
falls below the surface of the water outside the tubing), is the
surface tension of the liquid, is the radius of curvature of the
tubing, is the density of the liquid, is the gravitational con-
stant, and is the contact angle of the liquid on the capillary
surface. The lumenal surface of the PE tubing ( ,

), in its original state from the vendor, exhib-
ited a negative capillary rise of 6 mm, which corresponds to a
contact angle of approximately 92 , which is close to values
that have been previously reported [31] for flat untreated PE sur-
faces. To determine whether a change in pressure drop along
the tubing, during plasma treatment affects the CR measure-
ments, the total pressure drop along the tubing was changed.
The same plasma conditions used for the monochromator uni-
formity measurements were used here, which were: 1) uniform
plasma (low-pressure side , high-pressure side

), and 2) nonuniform plasma (low-pressure side
, high-pressure side ). For the uniform

plasma case, the PE tube was exposed for two 1-s pulses, while
for the nonuniform case, the tube was exposed for three 1-s
pulses. An air plasma was used to treat the tubing in both cases.
The results of the CR measurements, for the two cases, as a func-
tion of distance along the plasma treated tubing, is shown in
Fig. 5. The left-hand scale shows the CR rise of the DI water
and the corresponding contact angle is shown on the right-hand
scale. It can be seen that for both cases, there is a minimum
CR near the middle of the tubing. The CR increases near the
ends of the tubing. Again, similarly to the monochromator mea-
surements, we believe that this is due to the fact that the elec-
trodes that create the plasma are located at the ends of the tubing,
where the plasma is more intense. For the nonuniform case, the
CR measured along the tubing has a maximum at the high-pres-
sure end and then it drops toward the low-pressure side. This
is very similar to the monochromator measurements under the
same conditions. However, unlike the monochromator measure-
ments, which flatten out at the low-pressure end, the CR keeps
increasing toward the low-pressure side. We conclude that the
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CR measurements become more nonuniform along the tubing
as a result of two factors: 1) when the pressure drop along the
tubing is increased, and 2) the proximity to the electrodes.

Thus, we have shown that the intensity of light emitted from
the microplasma as a function of position can be related to the
uniformity of the plasma along the treated tubing. In addition,
light intensity can be related to the CR along the tubing under
similar plasma conditions. It is also important to note that for
five or more 1-s pulses in an air-plasma, for both the uniform and
nonuniform plasmas, the CR reaches a maximum of 27 mm (

contact angle), which is uniform along the whole length of
the PE tubing. Therefore, uniformity of plasma treatment can
be measured with the CR method alone. However, it is expected
that without careful optimization of the plasma, the ends of the
tubing where the plasma is more intense may be degraded before
the lumenal surface near the middle of the tube is fully treated.
This may become more of a problem as the length of the tube is
increased.

V. COATING AND IMMOBILIZATION OF PEO SURFACTANTS

ONTO PE TUBING

The PI technique consists of a two-step process [43]. First,
a surfactant is coated on the surface to be modified and then it
is exposed to an inert gas plasma. During the inert-gas plasma
exposure, crosslinking between the surfactant and the polymer
substrate may occur, thus covalently coupling part of the pre-
coated surfactant to the lumenal surface of the tubing by the
Crosslinking by Active Species of INert Gases (“CASING”)
method [30]–[32]. Since an inert gas is used, there is no signif-
icant change in gas-phase plasma chemistry along the tubing,
since argon is not consumed by the surfactant or the substrate
during plasma exposure [32]. Thus, this technique is ideal for
treating the lumenal surface of small-diameter polymer tubing,
since the consumption of gas is negligible, making it easier to
control the uniformity of the microplasma treatment.

To improve wetting of the PE surface by a 10% w/v aqueous
PEO surfactant (Brij 98) solution, the hydrophilicity of the lu-
menal surface of the PE tubing was increased. This was accom-
plished by introducing polar functional groups at the surface by
means of plasma treatment [43]. The inside of the PE tubing
was exposed to four 1-s pulses of a uniform air-plasma. The
tubing was then removed from the reactor, and the PEO surfac-
tant was injected into the PE tubing and remained in contact
with the lumenal surface for 30 min at room temperature (RT).
Subsequently, the surfactant was withdrawn, and the tube was
air dried at RT for 30 min while the solvent evaporated, leaving
behind a thin coating of PEO polymer on the lumenal surface.
The precoated tube was then reconnected to the vacuum system
and exposed to an argon plasma, under uniform-plasma condi-
tions, for a total of 10 1-s pulses. After the final plasma treat-
ment, the tube was flushed with DI water for 5 min and then
soaked in fresh DI water before blood compatibility testing was
undertaken.

VI. BLOOD-COPATIBILITY TESTING

To determine whether PEO that has been plasma-immo-
bilized on the lumenal surface of PE tubing can reduce the

Fig. 6. SEM images of the lumenal surface of untreated and PEO treated PE
tubing after exposure to blood flow at a rate of 0.75 ml/min at 37 C for 1 h.

adhesion of human blood platelets, an in vitro blood-circulation
loop was constructed. Detailed procedures of the protocol
for the blood compatibility testing of the plasma modified
tubes have been described elsewhere [23] and are only briefly
described here. A peristaltic pump circulated blood through
two separate 26-cm long PE tubes, one of which was PEO
plasma-immobilized, while the other remained untreated.
Initially, the blood-flow direction passed through the treated
tubing, then through the peristaltic pump, and finally through
the untreated tubing before returning to the reservoir. After
30 min, the flow direction was reversed. After blood flow, the
remaining cells that were attached to the lumenal surface of
the tubes were fixed and dehydrated, and then prepared for
scanning electron microscopy (SEM) imaging. Figs. 6 and 7
show SEM images of both the untreated and PEO-treated tubes
after blood exposure. To facilitate comparison, and to utilize
the uniformly treated region of the tubing, SEM images were
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Fig. 7. SEM images of the lumenal surface of untreated and PEO treated PE
tubing after exposure to blood flow under higher magnification than Fig. 8.

obtained at the same point, near the middle of both the treated
and untreatd tubes.

Fig. 6(a) and (b) shows the adhering blood components
(mostly platelets) on the lumenal surface of the untreated and
PEO-treated tubes, respectivly. It can be seen that the number
of platelets adhering to the PEO-treated tubing is much less
than the number adhering to the untreated PE tube. In Fig. 6(a),
it can be seen that numerous microthrombi have formed on
the lumenal surface of the untreated PE tube after one hour
of exposure to heparinized blood. In Fig. 6(b), it can be seen
that there are a relatively few number of spreading platelets on
the PEO-treated tube, and even fewer bases for microthrombi.
Under higher magnification, shown in Fig. 7(a) and 7(b), it
can be seen that the fibrin network is far more complex on
the untreated tubing compared to the treated tubing. Thus,
we conclude that the number of adhering platelets on the

lumenal surface of PE tubing can be reduced by immobilizing
a PEO surfactant to the lumenal surface of the tubing using a
microplasma discharge.

VII. SUMMARY

A microplasma was created with HC electrodes which are
placed at each end of the tube. This discharge configuration has
many advantages compared to previous techniques. They are as
follows: 1) it is an inexpensive method to create a microplasma
inside small-diameter polymer tubing, and 2) when the plasma
is created, it extends along the entire length of tubing thus elim-
inating the need for movable electrodes or tubing.

Two microplasma diagnostics were used to monitor the
plasma properties. It was shown that by suitably controlling the
pressure drop along the tube, the degree of plasma uniformity
as a function of distance along the tubing can be optimized.
Emitted light from the plasma was fed into a monochromator
at various positions along the PE tube to measure the unifor-
mity. The monochromator measurements were then related to
the capillary rise measured along the length of the polymer
tubing for uniform and nonuniform plasma conditions. It was
shown that a nonuniform plasma treatment can be due to two
factors: 1) a pressure drop created across the PE tubing, and
2) proximity to the electrodes. A microwave-cavity diagnostic
was used to measure the density of an air-microplasma–a value
of was obtained.

PI was used to immobilize a PEO surfactant to the lumenal
surface of small-diameter PE tubing. It was seen that the use of
this method to immobilize PEO surfactants to the lumenal sur-
face of plasma-treated PE tubing showed a significant decrease
in the number of platelets adhering to the lumenal surface com-
pared with untreated PE tubing.
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