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Abstract. This paper presents a new nonlinear model which describes localized
magnetohydrodynamic (MHD) modes in reversed-field pinch (RFP) experiments.
To date, nearly all experimental and theoretical work in this area has relied on the
use of Fourier decomposition of spatial variations as a function of time. Moreover,
due to the complexity of this nonlinear problem, previous work has been restricted
to the analysis of a relatively small number of modes. In contrast, the model
studied in this paper, based on the damped-driven sine-Gordon (DDSG) equation,
addresses the full nonlinearity, does not rely on Fourier decomposition, and does
not require the range of the nonlinearity to be small. A specific consequence of
working with the full nonlinearity is the existence of solitary waves in dispersive
media. These solitary waves, a key part of the model, are used to describe the
so-called slinky mode propagating in the plasma. A remarkable resemblance is
seen between the waveforms obtained from experiments and the mathematical
predictions of the new model.

1 Introduction

By implementing the full nonlinear theory in toroidal systems, in particular using the sine-
Gordon equation, soliton-kink structures naturally emerge from nonlinear dynamics in disper-
sive media which can be used to fit experimental data. An important application of this im-
plementation is a new nonlinear model [1,2] which desciibes localized magnetohydrodynamic
(MHD) modes in reversed-field pinch (RFP) experiments. To date, nearly all experimental
and theoretical work involving these so-called slinky modes [3] has relied on the use of spatial
Fourier decomposition as a function of time. Moreover, due to the complexity of this nonlin-
ear problem, previous work has been restricted to the analysis of a relatively small number of
Fourier components [4]. In contrast, the model studied in this paper, based on the damped-
driven sine-Gordon (DDSG) equation, addresses the full nonlinearity, does not rely on Fourier
decomposition, and does not require the range of the nonlinearity to be small. A specific con-
sequence of working with the full nonlinearity is the existence of solitary waves in dispersive
media. These solitary waves, a key part of the model, are used to describe the slinky mode
propagating in the plasma. In this regard, the motivation for this work is derived from the fact
that the use of linearized models in a dispersive medium does not result in solitary waves that
sustain themselves as they propagate. Support for the new model is provided by data obtained
from the Madison Symmetric Torus (MST) [5], a reversed-field pinch experiment operated at
the University of Wisconsin-Madison. To this end, a remarkable resemblance is seen between
the waveforms obtained from experiments and the mathematical predictions of the new model.
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Fig. 1. Magnetic surfaces in a reversed-

plasma field pinch.

1.1 Reversed-field pinch toroidal magnetic-confinement systems

Toroidal magnetic-confinement systems generally use two magnetic-field components: one in
the toroidal and one in the poloidal direction. The systems are designed so that the magnetic-
field lines travel both poloidally and toroidally around the torus forming magnetic surfaces
that are closed nested tori. Ideally, in equilibrium, the plasma to be confined will maintain the
shape of the nested tori with each magnetic surface representing a surface of constant pressure.
A particular embodiment of such a configuration is the reversed-field pinch (RFP). Figure 1
shows the arrangement of nested magnetic surfaces in an RFP. The innermost nested magnetic
surface with a zero minor radius is called the magnetic axis.

In an RFP, the poloidal magnetic field is produced by a toroidal current flowing in the
plasma while the toroidal field is produced by a poloidal plasma current plus the field due to
currents flowing in a toroidal magnetic shell that surrounds the plasma. During RFP operation,
the magnetic-field lines wind loosely near the magnetic axis and more tightly as one moves
outward, until near the plasma edge, the toroidal magnetic field reverses direction-hence the
name reversed-field pinch. Toroidal and poloidal gaps cut through the shell are required to
allow externally generated fields to penetrate into the plasma.

Because of the toroidicity, the magnetic fields are not azimuthally symmetric about the
magnetic axis. As will be shown, this fact introduces a key nonlinearity in the equation of
motion of the slinky mode. In most fusion plasmas, such nonlinear interactions are central to
the determination of plasma behavior. In particular, we argue that the well-known slinky mode
itself is a manifestation of a fully nonlinear phenomenon.

Operation of an RFP generally proceeds as follows. (1) The toroidal field is turned on by
passing a current poloidally around the conducting shell. (2) An electromotive force, induced
around the torus toroidally, generates toroidal current in the plasma that in turn generates a
poloidal field. (3) A poloidal current is then driven in the plasma that reverses the toroidal field
near the outside of the plasma. The field reversal is sustained by the excitation of “dynamo”
magnetohydrodynamic (MHD) fluctuations which keep the poloidal current going [6]. At various
times during the discharge, the dynamo modes reset, which is seen as a “sawtooth-crash” event
on magnetic-pickup probes as shown in figure 2.

During operation, the confined plasma often exhibits temporal and spatial fluctuations in
the magnetic-field structure beyond the dynamo modes. The fluctuations can be measured with
the same magnetic-field detectors that [4] resolve their temporal and spatial behavior. In the
past, it has been the custom to decompose the fluctuations into Fourier modes for the purpose of
identification and analysis. Typically, the poloidal mode number is designated with the integer
m and the toroidal mode number with the integer n.

1.2 The slinky mode

It has often been observed that during the sawtooth cycles, well before a crash, the fluctuating
MHD modes in a RFP may become locked in phase to form a “slinky mode” which is a toroidally
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localized, rotating magnetic perturbation [25,27]. This then gives rise to a toroidally localized,
rotating “hot spot” induced on the surface of the conducting shell that faces the plasma. Slinky
modes have at times been observed to lock to static error fields, and therefore stop rotating in
the laboratory frame [25,27]. Unfortunately, when this occurs, the associated “hot spot” also
stops rotating and rapidly overheats the plasma-facing chamber surface at this point, leading
to an influx of impurities into the plasma, and the eventual termination of the discharge. The
plasma current in the RFX [7] experiment, for example, has been shown to be limited as a
direct consequence of the problems associated with locked slinky modes. Figure 2 shows the
trajectory of a slinky mode in an RFP in the poloidal direction as a function of time. The
location of the toroidal gap is marked on the right vertical axis.

Most notably, the dominant mode-coupling mechanism in RFPs, being a consequence of
nonlinear interaction, leads to a number of problems involving different Fourier-decomposed
MHD modes inside the plasma [9]. Since this kind of coupling is difficult to analyze, in order to
make any progress, in the past, previous authors have limited the number of Fourier-decomposed
modes that were taken into account.

1.3 Consistency with the sine-Gordon model

A main objective of this paper is to demonstrate that a new model [1], based on the sine-
Gordon equation, produces predictions which are consistent with experimental observations.
For example, when we consider the analytical investigation of mode locking [7], which involves
damping due to electromagnetic torques acting in the vicinity of rational magnetic surfaces, we
include the effects of the helical eddy currents and other damping by incorporating appropriate
damping terms in the model equation.

In the case of a perfectly conducting vacuum vessel, which applies to the MST experiment,
one analysis concludes [14] that mode phase locking appears when the magnetic energy of the
spatially decomposed Fourier modes m = 1, n = 5 and m = 1, n = 4 is maximized and that the
phase locking continues as long as the m = 1, n = 5 mode remains dominant. m is the mode
number in the poloidal direction and n is the mode number in the toroidal direction.

A conclusion to be drawn from such analyses is that phase locking of these modes is the
cause of the localized slinky-mode formation. However, an alternate conclusion is that when the
slinky mode is formed, the phase locking is a “marker” for the presence of the slinky mode. That
is, any disturbance which is localized in space will, as a consequence, exhibit phase locking. We
address this issue later on in this work.

To summarize, nearly all of the experimental and theoretical work in this area has relied
on the use of Fourier decomposition of spatial variations as a function of time [4]. Nonlinear
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Fig. 2. Slinky mode and sawtooth crash.
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interactions between the Fourier-decomposed modes are assumed, but due to the complexity
of the problem, only a relatively small number of such modes are analyzed. For example, in
reference [8] it is stated:

“The dominant mode coupling mechanism in RFPs is that due to the nonlinear interac-
tion of different Fourier decomposed MHD modes inside the plasma. Unfortunately, this
type of coupling is far more difficult to analyze than the toroidal coupling that takes
place in tokamaks. In order to make any progress, it is necessary to severely limit the
number of Fourier decomposed modes that are taken into account during the analysis.”

The limitations above are necessitated by the fact that sinusoids are not eigenfunctions of a
nonlinear equation. As a result, attempting to use sinusoids in such a representation to find a
solution to the nonlinear equation introduces additional mode creation and coupling between
all of the components, resulting in a significant increase in the complexity of the problem.

1.4 Limitations of Fourier decomposition

In view of the discussion above, we build upon existing results for classes of systems for
which linearization arguably does not apply. To this end, we introduce a technique that does
not require mode analysis and thus is not limited to the interaction of a small number of
modes. We view this as a critical point not only because our analysis does not require Fourier
decomposition, but also because modal analysis for nonlinear systems is only valid for time
and space restrictions which limit the range of nonlinearity to be small [28] and eliminates the
emergence of fully nonlinear phenomena. Said another way, such models, based on a linearizing
assumption or a restriction of the number of modes, imply that a linear or small combination of
mode amplitudes will adequately represent the solution to a nonlinear equation. The nonlinear
model studied here does not rely on this assumption, and as a result, significant differences
in the solutions can emerge. With existing literature in mind, after development of the model,
we compare our predictions with experimental measurements by carrying out a time-varying
Fourier spatial decomposition of the theoretical predictions.

1.5 Nonlinearity in dispersive media

For solitary waves in dispersive media, use of linear theory leads to periodic propagating distur-
bances in many systems, corresponding to the elementary solutions exp(ikx — iwt). For waves
of moderately small amplitude in what might be called “near-linear” or “quasi-harmonic” the-
ory, results are obtained by perturbation methods based on small amplitude expansions and a
Fourier analysis description. In the full nonlinear theory, however, while the solutions are no
longer sinusoidal, the existence of periodic solutions in the traveling wave variable { = kz — wt
can nevertheless be established in a number of cases. The main nonlinear effect is not simply
the difference in functional form; it is the appearance of amplitude dependence in the dispersion
relation. This leads to new qualitative behaviors, which are not merely a correction of linear
formulae. For such nonlinear forms, superposition of solutions (mode summation) is no longer
available to generate a complete solution.

A specific consequence of this nonlinear model is the existence of solitary waves in dis-
persive media. While waves with these profiles disperse in the linear theory, the inclusion of
nonlinear effects counterbalances the dispersion to produce waves of permanent shape; e.g., the
slinky mode in reversed-field pinches. Much previous theoretical work for the slinky mode is
based on plasma dynamics in cylindrical geometry. Since the slinky mode is a spatially local-
ized phenomenon and the plasma is dispersive, nonlinearities need to be introduced so as to
cancel out the dispersive effect. It is our hypothesis that by implementing the full nonlinear
theory in reversed-field pinches, including the effects of toriodicity, and recognizing the fact that
magnetized plasmas support helical waves, the sine-Gordon equation naturally emerges. The
sine-Gordon equation has an inherent balance between nonlinearity and dispersion leading to
solitary-wave kink structures that emerge from highly nonlinear dynamics in dispersive media
but does not require the introduction of any other nonlinearity.
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2 Experimental configuration and the nonlinear model

This section reviews the development of the nonlinear model [1] which we propose as a descrip-
tion of the motion of the slinky mode that has been observed to travel in a helical path around
the MST reversed-field pinch experiment. In our previous work [1], the model was introduced to
study the conditions for locking of the slinky mode to one of the gaps in the toroidal conducting
shell based on experimental results and the probability of a discharge locking as a function of
key variables. Here we solve the key nonlinear partial differential equation numerically [2] rather
than with a perturbation method. Use of the numerical technique allows details of the shape
and dynamics of the slinky mode to be readily apparent, conveniently examines the dynamics
of multiple kinks, and permits spatial Fourier decomposition.

2.1 Experimental configuration

The MST experiment, shown in figure 3, is a large reversed-field pinch with a minor radius of
0.52 m and a major radius of 1.5 m. The aluminum toroidal vacuum-chamber wall is 0.05
m thick except for the insulating gaps shown in figures 1 and 3—one that cuts the vacuum
chamber toroidally and one that cuts the chamber poloidally. Depending upon the values of
various parameters, the probability of locking (the mode becomes stationary and causes the
discharge to expel its energy) increases. A set of thirty-two magnetic-fluctuation pickup coils
is spaced uniformly around the torus toroidally at a fixed poloidal angle is used to detect the
presence and dynamics of the slinky mode.

2.2 The slinky mode as a kink soliton

Based on the observed properties of the slinky mode along with an analysis of the torques
around the magnetic axis acting on the mode, we argue that it behaves as a kink soliton, which
is a solution of the sine-Gordon equation. Such solutions have been studied in the case of the
propagation of a fluxon along a Josephson-junction transmission line [29], [31-33] and we shall
follow a similar analysis here.

In order to develop the sine-Gordon equation model, we make the following physically
reasonable plausibility assumptions about the nature of the slinky mode: First, we assume that
the mode is generated by magnetic reconnection and is an isolated magnetic island of finite
length that wraps around the magnetic axis of the torus as shown in figure 4. A magnetic
island is a set of nested magnetic surfaces with its own magnetic axis all of which lie within a
larger set of magnetic surfaces but is not necessarily concentric with the main magnetic axis.

In this case, the larger set of surfaces are the RFP main confining surfaces which were shown
in figure 1. Second, just as is the case in the main magnetic-confinement surfaces, we assume
both toroidal and poloidal currents will low within the island itself thus generating a magnetic
moment vector that points along the island magnetic axis.

The mode threads its way along the torus passing both the poloidal and toroidal vacuum
chamber gaps as shown in figure 5. The equation of motion for the slinky mode can be obtained
by summing torques acting on the slinky mode [9,10,12, 23] about the magnetic axis of the main
magnetic field surfaces. In particular, these torques, which are proportional to the confining
magnetic fields, vary sinusoidally [23] around the mode trajectory due to the toroidal effect.

2.3 Derivation of the basic sine-Gordon model

We assume that both the toroidal and poloidal magnetic fields at the location of the island
vary poloidally and their variation is given by the following expression

Boj

B- -_——
T 14 Aj(r)Fcoso

= By; (1 - Aj(r)]% cos ¢>> ,
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Fig. 3. Drawing of the MST experiment.

where, as shown in figure 6, r is the minor radius, R is the major radius and ¢ is the poloidal
angle that can be used to locate the magnetic axis of the magnetic island at each position along
its length. § is either T for toroidal or P for poloidal. The terms A;(r) are less than 1. Ap is
negative which ensures that the poloidal field is larger on the outside of the torus while Ar is
positive to ensure that the toroidal field is larger on the inside of the torus.

The magnetic energy of the slinky mode in these flelds can be expressed as

Winag =t - B = upBp + prBr,

where p is the magnetic moment of the magnetic island.

A force in the ¢ direction results from the V{i - B) force acting on the magnetic moments
of the island with a resulting torque around the magnetic axis of the torus given by
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Thus the torque can be generated by both the toroidal and poloidal fields. Nevertheless, we
assume that the slinky mode poloidal cross section is such that it is not located exactly at the
toroidal-field reversal layer where the net torque would be very small.

We assume that the island is long enough so that the circulating current around its magnetic
surfaces may be considered to be solenoidal so that each incremental section of the island is
considered to be a circular loop around which current flows. Since the magnetic forces on each
loop act so as to produce alignment of the loops, any twisting of the loops will result in a
spring-like restoring torque which we model in a finite-difference form as:

T'restoring - K[¢i+1 - 2¢1’ + ¢i-1]y
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where K is the torsional spring constant and ¢; is the angular displacement of the ith loop.
Passing to the limit as the separation between the loops tends to zero and summing torques
around the magnetic axis, we arrive at the sine-Gordon (SG) equation

where M is the moment of inertia per unit length of the slinky mode, T} is the torque constant
described above, and z is the helical distance along the mode trajectory. In the equation above,
if the torque term is zero, we obtain a linear wave equation with phase velocity

K
VUphase = M7

which is, in this formulation, assumed to be the Alfvén velocity [30].
We now normalize the sine-Gordon equation above by measuring distance in units of [%]l/ 2

and time in units of [#£]=!/2. We obtain

8¢ 0%
o = o Y

and note that the exact analytic solution to this equation is a kink soliton [35] of the form

é(z,t) = 4tan~! {i exp<7m1}”5—2>] ,

with parameter v denoting the velocity of the soliton, normalized with respect to the Alfvén
velocity. This normalized velocity can take any value between —1 and +1. The factor v also
determines the width of the soliton. It is customary to call the ‘+’ solution a kink and the ‘-’
solution an antikink.

Figure 7 shows a succession of plots of ¢(z,t) corresponding to increasing time along the
vertical axis and the initial conditions set by the solution of the unperturbed sine-Gordon
equation above evaluated at ¢ = 0. Figure 8 shows a plot of the derivative ¢(z,t) with respect
to 2. We shall use this derivative representation henceforth because this plot shows interaction
details more clearly, and also because as the kink passes a magnetic-loop sensor, it introduces
a current pulse, whose integral with respect to time is similar to what is shown in figure 8.

For the kink soliton, the solution ¢(z, t) corresponds to an angular displacement that changes
from 0 to 27 radians centered about the point where its argument is zero as shown in figure 6.
This corresponds to the motion of a set of coupled pendula [35]. The analogue of this trajectory
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as applied to a torus is as follows. The axial trajectory is the path of the slinky mode as
it moves helically around the torus and the center of the trajectory represents the toroidal
magnetic axis. Without damping or driving terms, the kink moves with its initial velocity along
its trajectory without change. This property is the result of a balance between nonlinear and
dispersive effects.

2.4 The damped-driven sine-Gordon (DDSG) equatior.

We now turn our attention to the effects of damping, driving terms and the vacuum chamber
gaps. To study these effects, we introduce the damped-driven sine-Gordon equation is modified
as shown below
02 0 & 5?
Mb?gé—i—Da—f —FTc?:% ——-Ka—a;é5 —Tsing+ G + Vg é(x — x0) sing

where D and F are damping coefficients, G is a driving term and the delta function at location
z = xo represents the presence of a “gap” in the vacuum chamber whose interaction strength
with the slinky mode is V.

More specifically, the effect of the gap can be analyzed by modeling the interaction of the
slinky mode with the gap in the following way. During RFP operation, a toroidal image current
is induced along the conducting shell. When the current in the shell travels near the gap,
continuity of the current is made through an external set of windings that allows the current to
flow around the gap. As a result, the current in the conducting shell becomes a poloidal surface
current that flows in opposite directions on each side of the gap. The result is a magnetic field
in the minor radial direction. Second, due to the same toroidal effects that cause the toroidal
magnetic field to vary poloidally, the poloidal surface currents, and hence the radial magnetic
field, exhibit a similar sin ¢ variation with poloidal angle as does the toroidal magnetic field.

Finally, the radial magnetic field crossed with the toroidal component of the current flowing
in the slinky-mode island produces a force in the poloidal direction (and hence a torque about
the main magnetic axis) which can be in the same or opposite direction as the V{u - B) torque
depending on the direction of the toroidal current in the slinky mode and/or the direction
of the radial magnetic field produced by the surface currents at the gap. Since this torque is
localized toroidally to the region at the gap, we model it with the delta function as shown in
the preceding equation. Normalizing the preceding equation, we obtain

o2 7] Fid 5?

8_tf —1—(18—(;5 - atai2 = ém—f —sing + v + osing §(z — xo).
The coefficients a and 3 above represent the coefficients of normalized damping terms, the
normalized driving term has coefficient v and the normalized strength of the gap-slinky mode
interaction is denoted by o.
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We assume that the damping is produced by plasma turbulence and is proportional to the
velocity of the kink. For simplicity, we limit the damping terms to the coefficient a. That is,
we assume 3 = 0. We also assume that the driving term is proportional to the plasma current,
I,, and the interaction of the kink with the toroidal and poloidal gaps is proportional to the
proximity of the kink to the gap(s).

We now turn to the combined effect of the driving and damping terms. The driving term ~
will accelerate the kink. Its velocity will increase until the deceleration produced by the damping
term a% will just balance the acceleration of the driving term. Then the kink will proceed at
a steady-state velocity which is generally not equal to the initial velocity that was used to set
it in motion.

2.5 Simulation results

We solve the DDSG equation using a finite-difference algorithm [34]. Figure 9 shows the effect of
the driving and damping terms on a kink launched with an initial value of v = 0.5. In this case,
the driving term accelerates the kink until it reaches its “terminal” velocity as it approaches
the gap. The gap region is shown as a straight line in the figure.

)
® 1
2
<
2 :
o
o
P
3
o
[
g
P
£
Fig. 9. A plot of a kink with driving and
T o : ! damping terms that passes a gap. Simula-
-50 [+] 50 100 150 200 250  tion parameters are tmqz = 6000, a = 0.04,

distance (arbitrary units) B=0,~=-002 v=05and ¢ = 7.075

Next, we examine the effects of the gap. We view the gap as the equivalent of a potential hill
or potential well. A positive value for o results in a potential hill for a kink and a potential well
for an antikink. Figure 9 also shows the mode trajectory with the gap simulated by a potential
hill of strength o. At low values of o, the kink slows down before it reaches the potential hill
(gap), and after the kink passes the potential hill, it then accelerates and again eventually
reaches its terminal velocity.

Figure 10 shows the results obtained for similar conditions with ¢ being increased. Now, the
kink cannot overcome the potential hill and is reflected. The kink turns around after reflection
because the driving term eventually overcomes the effects of the reflection. Consequently, the
kink returns to the vicinity of the hill where it is reflected again. However, because damping
is taking place, the reflected kink moves a shorter distance away from the gap before the
kink’s velocity again reverses. This type of slinky-mode dynamics has, in fact, been observed
experimentally in MST. After a number of these reflections, the kink becomes “locked” to a
region directly in front of the hill. For sufficiently high damping, the kink does not reflect and
it is locked immediately at the hill.

It is also possible to see these effects when more than one kink is present. Figure 11 shows
locking at the gap for a set of four kinks, all launched with the same initial velocity v = 0.5 but
at different positions around the torus. It can be seen that the kinks are preserved as separate
entities and no crossing of their trajectories is observed, even during reflections from the gap.
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3 Fourier decomposition

As was noted previously, experimental measurements of phenomena that occur in toroidal
geometry are typically Fourier decomposed in the toroidal and poloidal directions. This has
been used to determine which Fourier modes are “dominant” and the analysis of the Fourier
modes is often used to predict whether a particular phenomenon will occur. One of the main
contentions of this paper is that when such phenomena obey the sine-Gordon equation, a Fourier
analysis is not necessary and can be replaced by the full nonlinear solution. Nonetheless, it is
of interest to make a comparison of the theoretical prediction of the sine-Gordon equation with
the classical Fourier analysis in the literature.

For the experiment in question, MST, the slinky mode is detected with an array of thirty-
two magnetic field pickup coils spaced uniformly around the torus at the same poloidal angle.
Accordingly, in our theoretical model, we also sample the solutions obtained in the previous
section at thirty-two uniformly spaced points, where we assume that one complete revolution
around the torus is represented by the same horizontal dimension in, for example, figures 10
and 11. Figure 12 shows the thirty-two sampled signals as a function of time for the same
conditions shown in figure 10. Note that in figure 12, consistent with experimental data, time
is on the horizontal axis and distance around the torus is the vertical axis.

The set of these sampled signals can now be Fourier decomposed in space at various times
giving a sequence of “snapshots.” Figure 13 points are used, only the fundamental and the first
sixteen harmonics are meaningful. The apparent oscillations observed in the Fourier spectra are
due to the fact that the harmonics above the sixteenth were not obtained from the simulation. If
a higher number of harmonics are obtained by additional sampling, it is seen that the spectrum
remains constant throughout the simulation.

Fig. 11. The trajectories of four kinks
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gap. The conditions were set to achieve lock-
. : - ing. Simulation parameters are t;nqe = 10000,
0 100 200 800 & =004, 8=0,v=-001,v =05 and
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Using the Fourier coefficients obtained as above, it is now possible to reconstruct the original
kink soliton at each instant of time at which the Fourier coefficients were evaluated. It is also
possible to examine one or more of the harmonics to determine their relationship and see when
and if “phase locking” of specific modes occurs. In order to examine this more easily, we look
at the normalized Fourier modes. That is, we assume each mode has unit amplitude but its
phase ¢y, is that obtained from the Fourier decomposition. Thus, the k-th normalized Fourier-
decomposed mode is

2rx
d’norm,k = COS [k—L_ + Wk:ly

where L is the distance around the torus. Figure 14 shows an overlay of the fundamental and
the first sixteen harmonics at several times. Since the modes are each normalized to unity, the
representation of the slinky mode is not correct in amplitude, but the phase locking of all of the
modes is quite apparent, both before and after the mode interacts with the gap. The calculation
is made for the same conditions as shown in figure 9.

4 Comparison with experimental results

This section provides a comparison of the theoretical work described above with measurements
of the slinky mode in the MST experiment. We investigate cases where the slinky mode locks
and where it does not lock.
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Figure 15 shows an experimentally measured slinky mode moving with constant velocity
and viewed exactly in the same format as for the theoretical calculations of figure 12. We model
the structure of the slinky mode shown in this figure with a chain of multiple kinks, each one
rotating about the magnetic axis by 27 radians. To represent this, we use, as an example, four
kinks passing the gap that are represented as thirty-two samples in an equivalent way to the
experimental results in figure 15. These are shown in figure 16. Note that in both figures the
kinks appear to interact with each other and/or the gap so that their separation as they pass
the gap is not constant. As will be shown subsequently, groups of kinks, as in these figures, will
show peaks in their Fourier spatial spectra. The mode number(s) where the peak(s) occur will
depend on the number of kinks and their relative separation.

Fig. 15. Thirty-two sampled magnetic

. . . pickup signals from the MST experiment

17 17.5 18 18.5 19 showing the slinky mode moving with a
Time (milliseconds) nearly constant velocity.

Tororidal distance around the
torus

A similar comparison can be made in the case of locking. Figure 17 shows the thirty-two-
sample experimental measurements of the slinky mode for locking while figure 18 gives the
results for an equivalent simulation. One of the more interesting slinky-mode trajectories
shows reflection from the gap followed by reversal of the trajectory followed by reversal, etc.
Figure 19 displays the experimental results on the left with a corresponding simulation on the
right. We conclude from this that the driving term continually acts in the same direction on
the slinky mode throughout the trajectory and is roughly constant.

We now examine the experimental Fourier decomposition of the slinky mode [4]. The left
side of figure 20 shows the experimentally measured slinky mode. The right side of figure 20
shows the overlay of the sixth-through-the-tenth normalized modes of the sampled data on the
left side of figure 20. Phase locking is clearly evident at those locations where the slinky mode
appears. It should be mentioned that the experimental Fourier decomposition was made only
in the toroidal direction because the slinky mode appears to have only a single poloidal mode
number, m = 1.
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Fig. 16. Thirty-two sampled simulation signals after calculating the trajectories of four kinks passing
the gap without locking. Simulation parameters are: tmar = 20000, a = 0.04, 8 = 0, v = —0.01,
o =1.733, and v = 0.5.
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The experimental results in figure 20 are virtually identical to the results obtained from the
solution of the sine-Gordon equation as shown in figure 21, including the appearance of phase
locking at the points where the kink soliton appears. To make a more direct comparison, figure
21 shows the sum of the normalized sixth-through-tenth harmonics on the right compared with
the computed kink trajectory on the left. The resemblance to figure 20 is striking.

Finally, it has been reported in the literature that the harmonic spectrum of the slinky
mode in MST has a local peak in the spectrum around n = 6 [17]. It is our view that such
a peak appears because, in MST, as has been seen in the experimental data in this paper,
the slinky mode is composed of a series of kinks. To verify this, figure 22 displays the Fourier
decomposition of a series of four kinks. The kinks are displayed on the right hand side of the
figure while the Fourier spectrum is displayed on the left-hand side. Note that a peak in the
spectrum appears around n = 13. When the spacing between the kinks is increased and/or the
number of kinks is increased, the peak in the spectrum shifts to lower spatial frequencies and
vice versa.
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Fig. 18. Thirty-two sampled calculated signals obtained afte: calculating the trajectories of four kinks
that lock just before crossing the gap. Simulation parameters are: tmee = 15000, a = 0.04, 8 = 0,
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Fig. 19. Experimental vs. theoretical comparison of multiple reflections of the slinky mode followed
by reversal of the trajectory caused by the driving term.
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left (a). Phase locking is evident.
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Fig. 21. Overlay of the normalized sixth through the tenth harmonics for the computed kink trajectory
shown on the left. Similar phase locking is observed when compared with the experimental results shown
in figure 20.
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Fig. 22. Spatial Fourier spectrum of four kinks showing a peak at n = 13. Simulation parameters are
trmas = 10000, a = 0.04, 8 =0, o = 30 and v = 0.5.

5 Conclusions

In this work, it was argued that the use of the DDSG equation as a model for the slinky mode in
a reversed field pinch device is an effective tool. It is fully nonlinear and does not require the use
of Fourier decomposition of the slinky mode. It successfully demonstrates the conditions under
which locking of the slinky mode can occur. In addition, we show that phase locking of spatial
Fourier modes can occur whenever a localized phenomenon such as the slinky mode appears.
Further applications of this technique can be used to explain the change in the experimentally
measured width of the slinky mode as the velocity of the mode changes.

Although the DDSG model we have proposed appears to be much simpler than previous
formulations for slinky-mode dynamics, its derivation rests on two well-established facts (1)
magnetized cylindrical plasma columns support helical modes and (2) toroidal geometry intro-
duces a periodic poloidal dependence. These two general features lead directly to the DDSG
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model. Given the variety of empirical evidence that this model manages to simulate, we believe
that the relative simplicity of the DDSG model should be considered a virtue.

The author would like to express his thanks to B.R. Barmish, H.K. Ebraheem and A.C. Scott for their
collaboration with this work.
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